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Types of problem

1. ‘Information’ as a connector

• Many ‘agents’ with individual propensities
– Abilities, inclinations, aversions, strategies

• Not necessarily any direct interaction

• Respond to ‘common information’
• Available equally to all

• Some generated by the collection of agents (endogenous)

• Some generated by external sources (exogenous)

• Leads to effective interaction

• c.f. bosons in QFT    or maybe 
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2. Networks retrieving information by queries

• Minimise ‘time’/ # steps to find someone with the answer

– Scale-free networks

• Search N nodes in lnN steps

• Dynamical networks

– Growing

• Much studied

– Networks under churn

• Nodes constantly entering and leaving

• Topological transitions 



1. Information as connector

• Many-body

• Quenched disorder

– Different ‘agents’ ~ different abilities,strategies etc.

• Often frustration/competition

• Dynamical

• Cooperative behaviour?

• Transitions?

• Complex?

• Models 

• Methodology

• Range-free information

• Some solutions

• Some concepts



Price

Time

Stockmarket
Many speculators; buy low, sell high

Different strategies

(Disorder)

Common information

(Mean field)

Learn from

Experience ?

(Dynamics II)

Not all can win (Frustration)

Buy & sell

(Dynamics I)

Information Consequence

&



Minority game
N agents 2 choices 

Aim to be in minority
Individual strategies � Collective consequence
act on common in turn 
preferences modified by experience

Correlated behaviour through common purpose
Phase transitions, fruitful irrationality, ‘non-ergodicity’



Original MG model

(Challet & Zhang ‘97)

• Information: Minority choice last m steps
• Strategies: Boolean functions

– (few each, random quenched, different for each agent)

• Points: decide which strategy to use (t)
updated by performance (t)
best strategy used (t)

Simplify to 2 strategies per agent



‘Volatility’
a ‘natural’ relevant macroscopic observable

Standard deviation of #‘buy’ versus #‘sell’

•Correlations

•Scaling parameters: 

α=2m/N , σ/√Ν

•Phase transition:α c
minimum in volatility

Savit, Manuca, Riola 99

Random

Worse than

random

Better than random

2 /m
Nα=



‘Volatility’
a ‘natural’ relevant macroscopic observable

Standard deviation of #‘buy’ versus #‘sell’

Random

Worse than

random

Better than random

2 /m
Nα=

Similar for 

‘random histories’

MG output 

~

interaction effectuator

Cavagna



Ergodicity-breaking 

Phase transition

α =α c

Minimum in volatility
&

Ergodic/ non-ergodic

Recall: α = 2m / N

= D / N

Random

Non-
ergodic

Ergodic

Generalized batch model



MG with ‘random information’

D=2m
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Difference equation

• Relative point-score:

• Dynamics:

• Strategy vectors:
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Coarse-grained time-average over I(t)

Effective interaction between agents

‘Equation of motion’
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Batch

‘Range-free’



c.f. Anti-Hopfield in field
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Effective Hamiltonian

c.f. Hopfield model
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Starting point: generating functional

Full macrodynamics
equilibrium or non-equilibrium
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Micro → Macro

• Introduce auxiliary ‘macrofields’ (x 1) 
etc.

• Exponentiate delta functions     e.g.

• Disorder average (over strategies)
• Substitute for many microvariables
• Gaussian in explicit microvariables: integrate out
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Micro → Macro

Now macrovariables only

Large N: extremally dominated

Saddle-point → effective single particle dynamics
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Effective single-agent ensemble

Non-Markovian stochastic process

with coloured noise, memory, self-consistent correlation & response functions
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Simulations & iterated theory

pi(0)=0

pi(0)=1

Open = simulations    Solid = numerical iteration of analytic effective agent equations

pi(0)=0.
5

Initial bias

Galla & S

ρ=.5: uncorrelated ρ=0: anti-correlated



Solutions
to

Effective single agent equations

Any α: Numerically soluble for finite number of time-steps,
but increasingly computer-expensive as t increases

α≥αc :  Analytically soluble for certain quantities 
with ansätze whose breakdown signals αc

α<αc : Not yet solved



Further ansätze for equilibrium analysis: 
α≥αc

• Stationarity:
• Finite integrated response
• Weak long term memory:

Order parameters in stationary state
• Persistent correlation function:
• Integrated response:

• Breakdown of theory: one of these assumptions violated
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=
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τ

χ τ=∑

lim ( )Q C
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Persistent correlations

Batch ρ=0,0.1,..,0.9
bottom to top

Anti-corr. to highly corr.

uncorrelated

Simulations &
analytic theory

1 2( )i iP R R
µ µ

ρ= =Correlated strategies:ρ: ρ=0: anti-correlated
ρ=0.5: uncorrelated

ρ=1:identical



Possible extensions 
within econophysics

• Systems with more features but still 
range-free
– i.e. more ‘local’ variables and couplings but 

still global interactions 

• Dynamical strategies: still need heterogeneity

• Liquidity providers: c.f. ATP



Limit-order book

Current price (t)

buy sell

Price-line

c.f. Evaporation-deposition-annihilation

Agents place or remove orders: buy, sell, market. May be executed.
Speculators gain on price changes. Manufacturers must absorb → liquidity.

But how do they choose
what to do? 
Evolution of strategies?
Driven by individual attitudes, 

co-operative actions, learning?

More realistic extension of minority game?



More generally

Dynamical generating functionals

Micro → Macro-variables: multi-time

  (Equations of motion) (constraints) Z DS DJ Jacobianδ δ= ∫
Microscopic variables, all times

Fast & slow
microscopic “attempt” times in eqns. of motion

Also generating term

exp{ ( )}i S Jλ µ+

Include real endogenous information and exogenous influences, 

agent-differences & stochasticity/uncertainty



Peer-to-peer networks
• Computer connectivity networks

– Operational connections: e.g. file-sharing
• Distinct from physical connection network

– Nodes constantly leaving and joining the network
• Under churn

• Need fast file-finding
– Scale-free structure:

• Local search strategies scale sub-linearly with size
( ) ~p k k

γ−

2. Networks retrieving information by queries



Can we devise 
easily-implemented “networks under churn”
with power-law connectivity distributions ?



Preferential attachment 
Barabasi-Albert 

• Addition of a new node
– Assign to each node an attractiveness:
– Connect new node to m existing nodes chosen randomly 

with probabilities proportional to their attractivenesses
– Needs information about connectivity of all nodes

• Growing network
– Yields power-law distribution:                        

• Network under churn
– P(k) decays faster than power-law

i iA k∝

( )p k k
γ−∝



Local attachment
Bauke-S

• Addition of a new node, two-step procedure
– Pick any other node randomly: no preference
– Do not connect to that node!
– Connect to a nearest neighbour of that node
– Repeat m times

• Yields power-law connectivity for both growing 
networks and networks under churn

• Needs only local information
c.f. Gnutella cache-ponging



Cumulative degree distributions
Preferential attachment Local attachment

Exponential Power-law

Both are for networks of mean connectivity m under churn

Hereafter consider just local attachment

m = 2

m = 8



Mean attractiveness

m = 5

*

*
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                    ;    
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= − ≤ ≤

− ≥

Top left inset

shows k*(m)

Local attachment

networks



Conclusion so far

• 2-stage local attachment
– Gives power-law scale-free networks

• With their search-speed advantages
– Without needing data on all peers

• Recall 
– (i) random unbiased connection to peer A
– (ii) ask who are his neighbours
– (iii) connect randomly without bias to one of them

• Offers possibilities as a practical protocol



Topological transitions

• Networks under churn
– E.g. At each time step:

• Prob r: remove randomly chosen node
• Prob 1: add new node and from it m new links
• Choose the nodes to connect to randomly with

attractiveness 
* /   if 

( , *);   ( , *)
*                else

k

kk m k m
A k k k k k

k
ε ε

≤ = + =  
 



Power-law or exponential

(a) exponential            (b) power-law



Phase diagram

Similar phase diagrams for other churn models



Analysis

Master equation:
, 1 1 1{ } ( 1) ( 1) 0;  
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Another example
At each step:

– Insert m new edges with probability p
– Rewire m links randomly with probability q

– Add new node (m links) with probability r

– Preferential attachment

p+q+r=1



Conclusion

• Topological transitions as attachment rules varied

• Negative perturbations of linear attractiveness tend to stabilize power 
laws

• In view of ubiquity of power-laws in nature, do such pertubations occur 
in real world networks?


